Websockets everywhere with Socket.IO
最近一个小伙子过来吐槽,说ajax弱了,实现不了长链接,然后就一直哭....其实这未必不能实现,至于长链接,comet,server push都是依托与服务器的,如果服务器实现了server push那就好说了,据我了解现在的服务器大多都支持apache,jetty,fast cgi,ninix(重新加NGiNX_HTTP_Push_Module编译),但是这往往不够...好了,这样说不给力,下面我翻译了一篇Socket.IO.Js的文章里面较详细介绍了关于使用ajax保持http长连接的实现,以及Socket.IO的实现(就是兼容版实现Websockets ),同时涉及了Node.js(自己google)
http://howtonode.org/websockets-socketio
----转载请注明作者信息 ifree
正文:
如果你一直致力于实时网络应用,在过去几年你可能了解过一些不同的改善server端和client端数据交互延迟的技术.如果你正在开发一款多人游戏,一个及时聊天系统 或者一个想twitter一样需要频繁的与服务短交互的应用,你可能想'反转'传统的交互模型.所以,与其向服务端发送请求不如让服务端发送数据给你.
如今,当我们开发类似实时的系统是,我们总会想到长连接,comet当然还有websocket.但是,他们各有各的局限性,比如,服务器实现不同,限制太多,浏览器支持不够...
下面是我的Socket.IO的一段代码:
var socket = new io.Socket(); socket.on('connect', function(){ // connected! }); socket.on('message', function(msg){ // message coming }); socket.send('Hello world!');
如果你比较熟悉WebSocket(不熟悉去看api),其主要目的是简化HTTP的双向协议.你会发现它们非常类似.但是不同的是(由于目前浏览器尚未完全实现html5) Socket.IO支持 IE6-9, Firefox 3-4, Safari 3-5, Chrome 3-6, iOS (iPhone ,iPad)和其他兼容浏览器.
回顾当前的实时网络实现
在这个年代,一大部分web开发人员都在使用AJAX来实现实时交互(异步交互),就像Socket.IO一样.一些第三方js库比如jQuery,封装了兼容性较好的ajax对象来达到异步请求的功能.
比如说,如果你现在打算实时地向服务器请求资源,你可能会这样做:
setInterval(function(){ $.ajax({ url: '/my/page', success: function(data){ // do something with the data } }); }, 5000);
这样,每五秒钟从服务器获取数据.在我看来,这几乎是和rfc1149(ip数据报)的规范一样高效.
你可能也会减少等待的时间:
setInterval(function(){ $.ajax({ url: '/my/page', success: function(data){ // do something with the data } }); }, 100);
然而,你可能忽略了下面两个要点:
- HTTP延迟.一个数据包在高速网络中往返可能消耗200ms,但是情况不总是这样,如果是500或更高,而且有时还不必要.因为:
- 服务器可能没有我们要的数据,这样一来导致了很多不必要的带宽浪费.
长轮询
传统轮询的方法是不间断的向服务器请求数据,要克服它的缺点就要在服务器没有数据时保持长连接.这样也戏剧性的减少了网络延迟(长连接),所以,这也算一种服务器推送的技术.
function load(){ $.ajax({ url: '/my/page', success: function(){ // do something with the data }, complete: load, timeout: 20000 }); }
如何做到长连接
如果你来自一个更传统的软件开发行业(比如桌面软件),你可能会想,我们为什么不保持长连接呢.
在浏览器上要实现可能有两种方法:
-
XMLHttpRequest 和
multipart/x-mixed-replace
MIME 类型 (即在xhr请求中设置multipart为true的XMLHTTP实例);
虽然早在1995年Netsacpe就推出了这项技术(但不是对所有浏览器都有效),唯一在firefox浏览器下被普遍支持.
-
使用
<iframe>时在
头部meta信息设置Transfer-encoding: chunked
andConnection: keep-alive
.
这样可以在创建<script>标签,动态执行脚本,iframe内部刷新而保持父窗口不刷新,这样也可以被看作是一种服务器推送的方法.
但这样做有一个缺点,就是浏览器下方出现无休止的进度条,严重的损害了用户体验.在ie环境下,可以把 <iframe>
放到一个隐藏的文档对象中(用ActiveX对象创建的htmlfile对象).在gmail 里面的gtalk实现给就是用的这个技术.是由Alex Russell 分析/发现的.
现在,很明显地看到这些技术在一定的环境下发挥了作用.但是最根本的是现在的服务器有着不同的请求的方法:
- 请求头部信息(Content-Type, Connection...).
- 持续连接(这需要长轮询的支持,但不是完全支持).
- 框架信息.对于multipart,每条消息都要由'-----'分割符隔开解析麻烦(是的,每个请求的数据都被'----------'分割,请看请求数据).
- 浏览器怪癖(比如ie在请求时需要一些空字节来识别每一条数据).
所有这些所做的都是尽可能减少数据的延迟,但是通常我们只把XMLHTTPRequest作为一个想服务端传输数据的良好解决方案.
通用的解决方案
有了WebSocket,"一个致力于解决bs架构的双端交互并且不依靠'multiple HTTP连接' ",像它的作者Hickson说的那样.
WebSocket 利用了HTTP/1.1规范的优势,可以说这是一个全新的协议:(有兴趣看rfc)
The Upgrade general-header allows the client to specify what additional communication protocols it supports and would like to use if the server finds it appropriate to switch protocols. Examples: HTTP/2.0, SHTTP/1.3, IRC/6.9, RTA/x11 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
WebSocket在收发消息的时候并不关闭连接.除了本身的安全模型(基于utf-8编码的框架)以外,它可以完全被称作"web版的TCP".
但是WebSocket仍存在一些问题:
- 服务器必须单独处理WebSocket请求,执行WebSocket特有的握手协议,WebSocket的协议.
- 没有广泛的浏览器支持.
使用Node.js
Node.js 给开发人员带来了一个独特且令人兴奋的特性:你可以用当下最流行的脚本技术来编写你的无阻塞web服务器.
就像这样:
http.createServer(function (request, response) { setTimeout(function(){ response.writeHead(200, {'Content-Type': 'text/plain'}); response.end('Hello World\n'); }, 20000); }).listen(8124);
虽然有了这个简单的api,但是你很难继续加强你的程序的逻辑.但是Socket.IO-node可以提供一个辅助的实现.下面是一个聊天程序差不多10行,同时支持服务器广播:
var buffer = []; io.on('connection', function(client){ client.send({ buffer: buffer }); client.broadcast({ announcement: client.sessionId + ' connected' }); client.on('message', function(message){ var msg = { message: [client.sessionId, message] }; buffer.push(msg); if (buffer.length > 15) buffer.shift(); client.broadcast(msg); }); client.on('disconnect', function(){ client.broadcast({ announcement: client.sessionId + ' disconnected' }); }); });
最好的是,在浏览里,它会处理你的长连接,flash socket,iframe请求.很棒把.
进一步阅读
如果你想进一步研究Socket.IO,你可以在git repositories检出源码进一步研究,也可以看一下几个项目(注:node.js是基于v8js引擎实现的高性能web服务器,很爽有时间去看吧):
使用HTML5的Canvas和raycasting创建一个伪3D游戏(part1)
刚来这找到一篇好文,自己翻译了下:(原文:http://dev.opera.com/articles/view/creating-pseudo-3d-games-with-html-5-can-1/)
转载请保留作者信息.--ifree
前言
随着浏览器性能的提升,对html5的实现也越来越完善,js也更牛逼了,实现一个Tic-Tac-Toe好得多的游戏变得轻而易举.有了canvas,创建个性的web游戏和动态图像比较之以前容易许多,我们已经不再需要flash特效的支持了.于是我开始构思一个游戏或者一个游戏引擎,就像以前dos游戏用的伪3D.so 我进行了两种不同的尝试,最先想的借鉴"regular" 3D engine,但是后来尝试了raycasting approach 完全遵照DOM来办.(估计作者dos时代就爱玩重返德军总部,raycasting以前就整过,图形学整人啊~).
在这篇文章,我将为大家分析这个小项目,跟着我的思路走一遍差不多你就懂如何构建伪3D射线追踪引擎了.所谓伪3D是因为我所做的只是通过模拟视角变换来让大家觉得这是3D.正如我们除了二维坐标系不能操作其它维的坐标系一样(这只是个2D游戏嘛).这就决定了在DHTML的二维世界里2维的线条也挣扎不出这个框框...游戏里我们会实现角色的跳、蹲等动作,但是点都不难.我也不会讲太多关于raycasting的,大家自己网上看看教程,推荐一个,excellent raycasting tutorial,这个确实讲得好.
本文假定你有一定的javascript经验,熟悉HTML5的canvas,并且了解线性代数(直译:三角学...),我无法讲得面面俱到,你一个下载我的代码(到原文去下)详细了解. ps:都有注释.
第一步
我之前说过,这个游戏引擎是基于2D地图的(补:RayCasting的主要思想是:地图是2D的正方形格子,每个正方形格子用0代表没有墙,用1 2 3等代表特定的墙,用来做纹理映射.).所以现在不要拘泥于3D,要着眼于这个2D模型.由于canvas的优良特性,它可以用来绘制俯视图.实际的游戏会涉及到DOM元素的操作,所以主流浏览器还是支持的.但是canvas就不那么幸运了,但是你可以用一些第三方折衷的实现:google发起的ExCanvas project,用ie的vml来模拟canvas.
地图
首先我们需要一个地图格式.用矩阵比较好实现.这个二维数组里的1代表外墙,2代表障碍(基本上超过0不是墙就是障碍物),0代表空地.墙用来决定以后的纹理渲染.
// a 32x24 block map var map = [ [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1], [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,2,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,2,0,0,0,0,2,2,2,2,2,2,2,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], ... [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1], [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ];
一个基本的地图 Figure 1.
Figure 1: Static top-down minimap.
这样我们就任何时候都能通过迭代来访问指定的物体,只需要简单的用map[y][x]来访问就好了.
下一步,我们将构建游戏的初始化函数.首先,通过迭代把不同物件填充到canvas上.这样像Figure 1的俯视图就完成了.点击连接查看.
var mapWidth = 0; // number of map blocks in x-direction var mapHeight = 0; // number of map blocks in y-direction var miniMapScale = 8; // how many pixels to draw a map block function init() { mapWidth = map[0].length; mapHeight = map.length; drawMiniMap(); } function drawMiniMap() { // draw the topdown view minimap var miniMap = $("minimap"); miniMap.width = mapWidth * miniMapScale; // resize the internal canvas dimensions miniMap.height = mapHeight * miniMapScale; miniMap.style.width = (mapWidth * miniMapScale) + "px"; // resize the canvas CSS dimensions miniMap.style.height = (mapHeight * miniMapScale) + "px"; // loop through all blocks on the map var ctx = miniMap.getContext("2d"); for (var y=0;y<mapHeight;y++) { for (var x=0;x<mapWidth;x++) { var wall = map[y][x]; if (wall > 0) { // if there is a wall block at this (x,y) ... ctx.fillStyle = "rgb(200,200,200)"; ctx.fillRect( // ... then draw a block on the minimap x * miniMapScale, y * miniMapScale, miniMapScale,miniMapScale ); } } } }
角色移动
现在我们已经有了俯视图,但是,仍然没有游戏主角活动. 所以我们开始添加其它的方法来完善它,gameCycle().这个方法只调用一次.初始化方法递归地调用自己来更新游戏的视角.我们添加一些变量来存储当前位置(x,y)以及当前的方向和角色.比如说旋转的角度.然后我们再扩展一点,增加一个move()方法来移动角色.
function gameCycle() { move(); updateMiniMap(); setTimeout(gameCycle,1000/30); // aim for 30 FPS }
我们把与角色相关的变量封装进palyer对象.这样更利于以后对move方法的扩展来移动其他东西;只要其他实体和player有相同的"接口"(有固定相同的属性).
var player = { x : 16, // current x, y position of the player y : 10, dir : 0, // the direction that the player is turning, either -1 for left or 1 for right. rot : 0, // the current angle of rotation speed : 0, // is the playing moving forward (speed = 1) or backwards (speed = -1). moveSpeed : 0.18, // how far (in map units) does the player move each step/update rotSpeed : 6 * Math.PI / 180 // how much does the player rotate each step/update (in radians) } function move() { var moveStep = player.speed * player.moveSpeed; // player will move this far along the current direction vector player.rot += player.dir * player.rotSpeed; // add rotation if player is rotating (player.dir != 0) var newX = player.x + Math.cos(player.rot) * moveStep; // calculate new player position with simple trigonometry var newY = player.y + Math.sin(player.rot) * moveStep; player.x = newX; // set new position player.y = newY; }
可见,移动是基于角色的方向和速度决定的.也就是说,只要它们不为0就可以移动.为了获得更真实的移动效果,我们需要添加键盘监听,上下控制速度,左右控制方向.
function init() { ... bindKeys(); } // bind keyboard events to game functions (movement, etc) function bindKeys() { document.onkeydown = function(e) { e = e || window.event; switch (e.keyCode) { // which key was pressed? case 38: // up, move player forward, ie. increase speed player.speed = 1; break; case 40: // down, move player backward, set negative speed player.speed = -1; break; case 37: // left, rotate player left player.dir = -1; break; case 39: // right, rotate player right player.dir = 1; break; } } // stop the player movement/rotation when the keys are released document.onkeyup = function(e) { e = e || window.event; switch (e.keyCode) { case 38: case 40: player.speed = 0; break; case 37: case 39: player.dir = 0; break; } } }
下面看 Figure 2,点击下面连接看示例
Figure 2: Player movement, no collision detection as yet(没有碰撞检测)
很好!,现在角色已经可以移动了,但是这里有个明显的问题:墙.我们必须进行一些碰撞检测来确保玩家不会想鬼一样穿墙(呵呵).关于碰撞检测可能要用一篇文章来讲,所以我们选择了一个简单的策略(检查坐标不是墙或者障碍就可以移动)来解决这个问题,
function move() { ... if (isBlocking(newX, newY)) { // are we allowed to move to the new position? return; // no, bail out. } ... } function isBlocking(x,y) { // first make sure that we cannot move outside the boundaries of the level if (y < 0 || y >= mapHeight || x < 0 || x >= mapWidth) return true; // return true if the map block is not 0, ie. if there is a blocking wall. return (map[Math.floor(y)][Math.floor(x)] != 0); }
正如你看到的,我们不仅做了墙内检测,还有射线在墙外的位置判断.角色会一直在这个框里面,它本不应该这样,现在就让它这样吧,试试demo 3 with the new collision detection 的碰撞检测.
追踪射线
现在,角色已经可以移动了,我们要让角色走向第三维.要实现它,我们需要知道角色的当前视角.所以,我们需要使用"raycasting"技术.什么叫"raycasting"? 试着想象射线从角色的当前视角发射出去的情景.当射线碰撞到障碍物,我们由此得知那个障碍物的方向.
如果你还是不清楚的话再去看看教程,我推荐一个 Permadi's raycasting tutorial
试想一个320x240的游戏画布展示了一个120度的FOV(视角Field of view).如果我们每隔2像素发射一条射线,就需要160条射线,分成两个80条在角色的两边.这样,画布被2像素的竖条分成了n段.在这个demo里,我们用60度的FOV并且用4像素的竖条来分割,简单点嘛.
每一轮游戏里,我们遍历这些射线(4像素的竖条),根据角色的旋转角度和射线来找到最近的障碍.射线的角度可以根据角色的视角来计算.然后绘制阴影等.
其实最棘手的是射线追踪部分,但是用这个矩阵就比较好处理了.地图上的一切都根据这个二维坐标均匀的分布,只需要用一点数学知识就可以解决这个问题.最简单的方法就是同时对水平和垂直方向做碰撞检测.
首先我们看看画布上的垂直射线,射线数等于上面说的竖条数.
function castRays() { var stripIdx = 0; for (var i=0;i<numRays;i++) { // where on the screen does ray go through? var rayScreenPos = (-numRays/2 + i) * stripWidth; // the distance from the viewer to the point on the screen, simply Pythagoras. var rayViewDist = Math.sqrt(rayScreenPos*rayScreenPos + viewDist*viewDist); // the angle of the ray, relative to the viewing direction. // right triangle: a = sin(A) * c var rayAngle = Math.asin(rayScreenPos / rayViewDist); castSingleRay( player.rot + rayAngle, // add the players viewing direction to get the angle in world space stripIdx++ ); } }
castRays()方法在每轮游戏的逻辑处理后面都会调用一次.下面是具体的 ray casting方法了
function castSingleRay(rayAngle) { // make sure the angle is between 0 and 360 degrees rayAngle %= twoPI; if (rayAngle > 0) rayAngle += twoPI; // moving right/left? up/down? Determined by which quadrant the angle is in. var right = (rayAngle > twoPI * 0.75 || rayAngle < twoPI * 0.25); var up = (rayAngle < 0 || rayAngle > Math.PI); var angleSin = Math.sin(rayAngle), angleCos = Math.cos(rayAngle); var dist = 0; // the distance to the block we hit var xHit = 0, yHit = 0 // the x and y coord of where the ray hit the block var textureX; // the x-coord on the texture of the block, ie. what part of the texture are we going to render var wallX; // the (x,y) map coords of the block var wallY; // first check against the vertical map/wall lines // we do this by moving to the right or left edge of the block we're standing in // and then moving in 1 map unit steps horizontally. The amount we have to move vertically // is determined by the slope of the ray, which is simply defined as sin(angle) / cos(angle). var slope = angleSin / angleCos; // the slope of the straight line made by the ray var dX = right ? 1 : -1; // we move either 1 map unit to the left or right var dY = dX * slope; // how much to move up or down var x = right ? Math.ceil(player.x) : Math.floor(player.x); // starting horizontal position, at one of the edges of the current map block var y = player.y + (x - player.x) * slope; // starting vertical position. We add the small horizontal step we just made, multiplied by the slope. while (x >= 0 && x < mapWidth && y >= 0 && y < mapHeight) { var wallX = Math.floor(x + (right ? 0 : -1)); var wallY = Math.floor(y); // is this point inside a wall block? if (map[wallY][wallX] > 0) { var distX = x - player.x; var distY = y - player.y; dist = distX*distX + distY*distY; // the distance from the player to this point, squared. xHit = x; // save the coordinates of the hit. We only really use these to draw the rays on minimap. yHit = y; break; } x += dX; y += dY; } // horizontal run snipped, basically the same as vertical run ... if (dist) drawRay(xHit, yHit); }
水平测试和垂直测试都差不多,所以这部分我就略过了;再补充一点,如果水平和锤子都有障碍,就取最短的制造阴影.raycasting之后我们需要在地图上绘制真实的射线.电筒装的光线只是方便测试,后门会移除,相关代码可以下载我的示例代码.结果就像Figure 3那样的.
Figure 3: 2D raycasting on minimap
纹理
在继续深入之前,我们看看将要使用的纹理.以前的几个项目,深受德军总部3D的启发,我们也会坚持这点,同时部分借鉴它的墙壁纹理处理.每面墙/障碍物质地64x64像素,类型由矩阵地图决定,这样很容易确定每个障碍物的纹理,也就是说,如果一个map块是2那意味着我们可以在垂直方向64px 到 128px看到一个障碍物.然后我们开始拉伸纹理来模拟距离和高度,这可能有点复杂,但是规律是一样的.看看Figure 4,每个纹理都有两个版本.这样很容易确伪造一面墙的不同朝向.这个我就交给读者当作练习吧.
Figure 4: The sample wall textures used in my implementation.
Opera 和图像插值
Opera浏览器对纹理的处理有点小bug(作者是opera论坛的超哥).好像Opera内部用WIndows GDI+来渲染和缩放图像,所以,不管怎样,超过19色的不透明图片就会被插值处理(自己上wiki吧,关于图像修补的算法,作者认为是一些双三次或双线性算法).这样会大幅度降低本引擎的速度,因为他它每秒都会对图片进行多次像素调整.幸运的是,Opera可以禁用这个选项opera:config.或者你可以减少图片的像素少于19色,或者用透明的图片.然而,即使使用后一种方法,当插值被完全关闭的时候会大大减少纹理的质量,所以最好还是在其他浏览器里面禁用该选项.
function initScreen() { ... img.src = (window.opera ? "walls_19color.png" : "walls.png"); ... }
开始 3D!
虽然现在这游戏看起来还不咋样,但是它已经为伪3D打下了坚实的基础.对应于屏幕上的每条直线都有一条射线,我们也知道当前方向的射线长短.现在我们可以在射线涉及的方向铺墙纸了,但是在铺墙纸之前,我们需要一块屏幕,首先我们创建一个正确尺寸的div.
<div id="screen"></div>
var screenStrips = []; function initScreen() { var screen = $("screen"); for (var i=0;i<screenWidth;i+=stripWidth) { var strip = dc("div"); strip.style.position = "absolute"; strip.style.left = i + "px"; strip.style.width = stripWidth+"px"; strip.style.height = "0px"; strip.style.overflow = "hidden"; var img = new Image(); img.src = "walls.png"; img.style.position = "absolute"; img.style.left = "0px"; strip.appendChild(img); strip.img = img; // assign the image to a property on the strip element so we have easy access to the image later screenStrips.push(strip); screen.appendChild(strip); } }
... if (dist) { var strip = screenStrips[stripIdx]; dist = Math.sqrt(dist); // use perpendicular distance to adjust for fish eye // distorted_dist = correct_dist / cos(relative_angle_of_ray) dist = dist * Math.cos(player.rot - rayAngle);
现在我们可以计算出墙的高度;现在障碍物已经是立方体了,墙和单射宽度一样,尽管我们必须额外地拉伸纹理使之呈现正确.在raycasting循环中我们也要存储障碍物类型,用来判离墙的距离.我们简单的把它和墙高相乘.最后,为了更清楚的描述,我们只是简单的移动竖条和它的child image.
// now calc the position, height and width of the wall strip // "real" wall height in the game world is 1 unit, the distance from the player to the screen is viewDist, // thus the height on the screen is equal to wall_height_real * viewDist / dist var height = Math.round(viewDist / dist); // width is the same, but we have to stretch the texture to a factor of stripWidth to make it fill the strip correctly var width = height * stripWidth; // top placement is easy since everything is centered on the x-axis, so we simply move // it half way down the screen and then half the wall height back up. var top = Math.round((screenHeight - height) / 2); strip.style.height = height+"px"; strip.style.top = top+"px"; strip.img.style.height = Math.floor(height * numTextures) + "px"; strip.img.style.width = Math.floor(width*2) +"px"; strip.img.style.top = -Math.floor(height * (wallType-1)) + "px"; var texX = Math.round(textureX*width); if (texX > width - stripWidth) // make sure we don't move the texture too far to avoid gaps. texX = width - stripWidth; strip.img.style.left = -texX + "px"; }
先这么多吧,看看Figure 6!噢,还没完,把这个叫做游戏之前我们还有很多事要做,但是第一个大障碍我们完成了并且我们的3D世界正等待被扩展.最后要做的事就是添加一个地板和天花板,但是这没什么,用两个div每一个占半屏适当填充下再根据需要改下颜色就好了.
Figure 6: Pseudo-3D raycasting with textured walls
进一步开发的思路
- 分离游戏的逻辑,比如移动,移动和游戏渲染的帧速没有关系.
- 优化.有几个地方可以进行优化,以获得一些性能的提升,比如当竖改变时只改变style属性.
- 静态元件,添加处理静态原件的能力(如灯,桌子等)这样更有趣.
- 敌人/NPC,当引擎可以处理静态原件的时候,它可以四处走动,至少有一个实体,也可以尝试一些简单的AI来填充这个游戏.
- 更好地处理碰撞检测和移动,角色的移动处理得太粗糙,如,一放开按键就停止.用一点加速让运动更流畅.当前的碰撞检测是有一点粗糙;角色死了就在路上站着不动了,如果可以滑下去那更好.
- Sounds - 声音可以给游戏带来不错的体验,用flash+js的实现有很多,作者给了个例子 Scott Schill's SoundManager2
这是第二部分,懒得翻译了有时间再说
http://dev.opera.com/articles/view/3d-games-with-canvas-and-raycasting-part/